激光写光电子学进展

基于时空冲突图的卫星光网络波长资源特性研究

李信^{1*},李勇军¹,赵尚弘¹,王翔¹,马志强¹,侯睿² ¹空军工程大学信息与导航学院通信系统教研室,陕西西安 710077; ²装备发展部某中心,北京 100034

摘要 针对动态卫星光网络中的波长资源紧缺问题,研究了其波长数与网络物理连通度的关系,提出了一种基于时空冲 突图的波长资源特性分析方法。利用随机生成网络拓扑连接的方式,将卫星光网络的动态拓扑离散为空间和时间冲突 图,分别表示网络的物理连通度和有效窗口。基于时空冲突图理论,建立空间冲突避免的路径选择概率和时间存储的有 效窗口业务概率,两者相乘得到时空冲突概率,进而计算网络所需波长数。研究结果表明,波长需求与网络物理连通度、 链路最大跳数和转发器数目有着密切关系,在业务重叠因子较大的情况下应该给卫星光网络分配更多的波长资源。 关键词 光纤光学与光通信;卫星光网络;波长资源;时空冲突图;物理连通度;网络连通度 中图分类号 O436 **文献标志码** A **DOI**: 10.3788/LOP213343

Research on Wavelength Resource Characteristics of Optical Satellite Network Based on Time-Space Conflict Map

Li Xin^{1*}, Li Yongjun¹, Zhao Shanghong¹, Wang Xiang¹, Ma Zhiqiang¹, Hou Rui²

¹Teaching and Research Section of Communication System, College of Information and Navigation, Air Force Engineering University, Xi'an 710077, Shaanxi, China; ²A Centre of the Ministry of Equipment Development, Beijing 100034, China

Abstract The relationship between wavelength demand and network physical connectivity is studied to solve the wavelength resource shortage problems in dynamic optical satellite network, and a method based on a time-space conflict map is proposed to analyze the characteristics of wavelength resources. The method for randomly generating network topology connections is utilized to discretize the dynamic topology of an optical satellite network into a space conflict map and a time conflict map, which express the physical connectivity and effective service window of the optical satellite network, respectively. Based on the time-space conflict map theory, the path selection probability of space conflict avoidance and the effective window service probability of time storage are established and multiplied to obtain the conflict probability in time-space and calculate the number of wavelengths required in the network. The results show that wavelength requirements are closely related to the network physical connectivity, maximum number of link hops, and number of transponders. More wavelength resources should be allocated to an optical satellite network with a larger business overlap factor.

Key words optical fiber optics and optical communication; optical satellite network; wavelength resource; time-space conflict map; physical connectivity; network connectivity

1引言

卫星通信由于在全球通信、遥感遥测、定位导航以 及军事领域的特有优势引起了人们的广泛关注,随着 5G通信、物联网服务,以及战场应急通信的快速发展, 对卫星网络的容量和服务质量提出了更高的要求^[1-3]。 星间微波传输技术由于其固有的瓶颈已难以满足未来 通信容量和服务质量的要求,采用激光作为通信介质, 具有大带宽、低功耗的卫星光通信可以满足这一变化 的需求^[4-7]。我国北斗导航卫星激光通信已采用同频 段组网,未来有望实现星间以及星地千兆比特速率传 输,为6G网络的实现提供有力保障。随着波分复用 (WDM)技术以及相关光学器件研究的成熟,在卫星 光网络上采用基于WDM的波长路由技术是必然的发

收稿日期: 2021-12-24; 修回日期: 2021-01-27; 录用日期: 2022-03-03; 网络首发日期: 2022-03-13

基金项目:国家自然科学基金(91638101,6170010130)

通信作者: *1300358390@qq.com

第 60 卷 第 9 期/2023 年 5 月/激光与光电子学进展

研究论文

展趋势,因为其不仅能有效地利用星载光放大器带宽, 还能简化星载路由决策和减少星载处理延迟^[8-10]。然 而由于卫星光放大器带宽有限,并且波长间距需保持 多普勒效应的安全裕度以及相应的收发隔离度,导致 星上可用波长资源匮乏,基于WDM的卫星光网络中 的一个关键参数是确定满足业务需求的波长数 量^[11-13]。随着我国卫星光网络建设的不断发展,未来 卫星光网络必然面临着大规模波长资源配置问题,因 此对卫星光网络的波长资源特性进行分析十分必要。

对卫星光网络中波长资源进行分析时,由于卫星 对地球的相对位置及其可见卫星的集合随着其轨道运 行而不断变化,应根据每颗卫星的可见卫星集动态建 立和删除链路并分配波长[14]。此外,卫星光网络中的 波长数量还受到星上光转发器数量制约、跳数增多引 起的误码率和时延增大限制,以及业务量增大引起的 光路重叠影响[15]。针对光网络中的波长需求问题,文 献[16]提出了基于 WDM 光网络波长需求问题,通过 大量随机生成的网络拓扑,研究了光网络的波长需求 与网络物理拓扑之间的关系,但是缺乏与网络具体性 能参数的联系。文献[17]利用快照来描述卫星光网 络,研究了低地球轨道(LEO)卫星星座上的波长路由 分配方法,并提出了一种基于完美匹配模型的链路分 配方案,用于解决基于快照的WDM卫星网络的波长 需求问题,然而并未考虑网络的动态特性。文献[18] 提出了一种基于典型卫星星座的波长路由算法,通过 引入具有存储计算功能的超级卫星节点,从波长资源 需求和网络连通性两个方面对算法进行了对比分析, 但是偏重于对网络路由的考虑。针对动态卫星光网络 中的波长需求问题,文献[19]提出了基于时空演化图的动态光网络波长需求估计方法,通过一些表征拓扑变化的指标,研究了拓扑变化对波长需求的影响,但是缺少分析波长需求的具体方法。

基于以上研究,针对动态卫星光网络的波长需求 问题,本文提出了基于时空冲突图的动态卫星光网络 波长需求分析方法。在对时间和空间冲突图分析的基 础上,通过引入时空冲突图,利用概率统计平均的思 想,研究了动态卫星光网络的波长资源特性与具体性 能指标之间的关系,为卫星光网络的波长资源配置和 工程化实现提供一定的理论依据和方法参考。

2 系统模型及问题描述

2.1 网络物理模型

图 1 所示为卫星光网络的示意图,图中信关站 (GES)用于业务的发送和接收,节点间的虚线表示可 能建立的星间链路,节点间不同线型表示不同的可用 波长资源。当业务需要从源节点s传输到目的节点d 时,首先需要根据可用波长资源集进行路由过程,找到 一条最短路径,然后进行波长资源分配,不同波长分配 方法会使用不同数目的波长。

由于星间激光通信系统发射功率较强,而接收端 为弱光探测系统,因此星间激光通信受到光源类型、光 路膜系、收发隔离度等影响。不考虑星上波长转换器, 卫星光网络的波长资源分配会受到波长连续性和互异 性约束,并且在分析卫星光网络波长需求时还要考虑 到网络拓扑的动态变化、星上光转发器数目的限制以 及跳数增多引起的时延和误码率增大等因素。

图 1 卫星光网络示意图 Fig. 1 Optical satellite network diagram

2.2 物理连通度分析

物理拓扑是卫星光网络中关键参数,不仅决定了 光路的分配,更决定了路由复杂度和波长需求数。网 络物理拓扑由若干节点组成,节点之间通过激光链路 进行连接。物理连通度α定义为网络中终端节点间双 向连接数量*L*与同样大小全连接网络中双向连接数量 之比,对于具有*N*个节点的卫星光网络:

$$\alpha = \frac{2L}{N \cdot (N-1)^{\circ}} \tag{1}$$

图 2 所示为具有 5 个卫星节点,具有不同物理连通

度 α 的卫星光网络拓扑图,不同线型代表不同的波长, 图 2(a)所示网络的 α =0.5,实现图 2(a)中任意两个节 点之间连接所需的最小波长数为4;图 2(b)所示网络的 α=0.8,实现图2(b)中任意两个节点之间连接所需的 最小波长数为2;而图2(c)所示网络的α=1,仅需要一 个波长便可以实现网络中任意两个节点之间的连接。

图 2 不同物理连通度的卫星光网络拓扑图。(a) $\alpha = 0.5$; (b) $\alpha = 0.8$; (c) $\alpha = 1$ Fig. 2 Optica satellite network topology diagrams with different physical connectivity. (a) $\alpha = 0.5$; (b) $\alpha = 0.8$; (c) $\alpha = 1$

2.3 星间链路建立条件

卫星节点间满足距离、仰角和方位角速率约束条时可形成潜在星间链路,为了简化,本文仅考虑星间距离的影响。在Walker-Delta星座模型下,卫星节点位置可由*M、N、F、h、*0五个参数来描述,*M*代表每个轨道平面上的卫星数,*N*代表星座中轨道平面数,*F*代表相位因子,*h*代表轨道高度,*0*代表卫星倾角,由文献[13]可知,第*i*个轨道上的第*j*颗卫星位置可以表示为

$$x_{ij}(t) = -R\cos\theta\sin\left(\frac{2\pi i}{N}\right)\sin\left[\omega t + 2\pi\left(\frac{j}{M} + \frac{iF}{MN}\right)\right] + R\cos\left(\frac{2\pi i}{N}\right)\cos\left[\omega t + 2\pi\left(\frac{k}{M} + \frac{jF}{MN}\right)\right], (2)$$

$$y_{ij}(t) = R\cos\theta\cos\left(\frac{2\pi i}{N}\right)\sin\left[\omega t + 2\pi\left(\frac{j}{M} + \frac{iF}{MN}\right)\right] +$$

$$R\sin\left(\frac{2\pi i}{N}\right)\cos\left[\omega t + 2\pi\left(\frac{j}{M} + \frac{iF}{MN}\right)\right], \qquad (3)$$

$$z_{ij}(t) = R \sin \theta \sin \left[\omega t + 2\pi \left(\frac{j}{M} + \frac{iF}{MN} \right) \right], \quad (4)$$

式中:R代表卫星到地球中心的距离;ω代表卫星运动的角速度。因此第*i*个轨道上的第*j*颗卫星和第*k*个轨道上的第*l*颗卫星和第*k*个轨

$$D(t) = \sqrt{\left[x_{ij}(t) - x_{u}(t)\right]^{2} + \left[y_{ij}(t) - y_{u}(t)\right]^{2} + \left[z_{ij}(t) - z_{u}(t)\right]^{2}}_{0}}$$
(5)

设卫星间可以建链的最小距离为*D*_{min},因此两个卫星 节点之间可以建立的链路需要满足:

$$D(t) \leqslant D_{\min} \circ \tag{6}$$

2.4 光网络拓扑形成

当确定潜在星间链路之后,从潜在链路集内选择 形成光学链路来确定卫星光网络拓扑,卫星光网络拓 扑形成需要遵循一定的准则,允许形成的星间光链路 数目受到当前潜在链路数目和星上光转发器数目的共 同约束。定义(σ_{min}, σ_{max})表示卫星节点度的范围,其中 σ_{max}不能大于星上光转发器的数量Q,为了保证网络的 可靠性, σ_{\min} 不能小于2。随着星间链路的建立和断 开,卫星光网络是动态变化的,但整个网络拓扑的连通 性在一段时间内基本不会发生变化,定义 $\beta(t)$ 表示时 间段[m,n]内的网络连通性。

$$\beta(t) = \sum_{i=1}^{N} \frac{2 \cdot \min\left[d_i^{p}(t), d_i^{AT}(t)\right]}{N \cdot (N-1)}, \qquad (7)$$

式中: $d_i^{AT}(t)$ 为当前时刻卫星节点*i*中处于工作状态的光学转发器的数目; $d_i^{P}(t)$ 为卫星潜在星间链路的数目。因此在时间段[*m*,*n*]内的网络连通度可以表示为

$$\overline{\beta} = \sum_{t=m}^{n} \frac{\beta(t)}{|n-m|}^{\circ}$$
(8)

随着网络业务量的不断增大,不同的业务可能会 在时间和路径上重叠,加剧网络波长资源的竞争,定义 业务重叠因子 CoF来表征业务在时域的重叠程度:

$$C_{\rm OF} = \frac{\sum_{r \in \mathbb{R}} O_r}{|R|(|R|-1)^\circ} \tag{9}$$

卫星光网络拓扑生成算法(算法1)如表1所示。

表1 拓扑生成算法

Table 1 Topology generation algorithm	rithm
---	-------

Algorithm 1: topology generation algorithm

Input: number of network nodes N, physical connectivity α , and range of node degrees ($\sigma_{\min}, \sigma_{\max}$).

Output: network topology connection diagram.

- 1) Calculate potential inter-satellite links referring to Eqs. (2)–(6);
- 2) Establish an inter-satellite link through a randomly selected inter-satellite link;
- 3) If for all nodes, σ∈(σ_{min}, σ_{max}):
 a) if meeting physical connectivity of network α;
 b) end if.
- $4) \ {\bf End \ if.}$

5) **Else** go to 2).

3 波长数计算

3.1 时空冲突图原理

在卫星光网络拓扑结构确定后,需要对业务进行

路由选择和波长分配,采用一种基于时空冲突图的波 长分配方法,针对具有一定时延容忍业务的波长需求 进行分析。定义无向图G=(V,E)来表示卫星光网 络,其中G为卫星节点集合,E为链路集合,每条链路 的可用波长数为n,定义波长集 $W=(w_1, w_2, \cdots, w_n)$ 为每条链路上的可用波长。假设网络中没有波长转换 器,因此必须满足波长连续性约束条件。

图 3 所示为一个具有 6 个节点和 8 条链路的卫星光 网络示意图。在卫星光网络中,将 k 个请求定义为集合 $R = (r_1, r_1, \cdots, r_k), r = (s_r, d_r, T_r, h_r)$ 表示一个具体的业 务。其中 s_r 表示业务的源节点, d_r 表示业务的目的节 点; $T_r = (t_r^r, t_r^r), t_r^r$ 表示当前业务到达时刻, t_r^r 表示业务 传输截止时间; h^r 表示业务成功传输所需要的时间。

图 3 6 节点卫星光网络 Fig. 3 Six node optical satellite network

表2为基于图3网络拓扑的5个业务请求情况,假 设业务r开始传输时刻为b_r,则为了保证业务成功传 输,b_r需要满足的约束条件为

$$t_r^s \leqslant b_r \leqslant t_r^f - h_r + 1_\circ \tag{10}$$

	Table 2	Business requ	est situation	
Request r	S_r	d_r	$\left[t_r^s, t_r^f \right]$	h_r
1	1	6	[1,3]	2
2	2	3	[2,4]	2
3	2	4	[3,5]	2
4	3	4	[3,5]	2
5	3	6	[1,3]	2

表2 业务请求情况

定义第r个业务请求的可用路径集和时间集分别 为 $P_r = (p_1, p_2, \dots, p_r), T_r = (t_1, t_2, \dots, t_r)$ 。将 p_r 定义 为空间集中的可用节点。集合 P_x 中的第i个节点 p_x^i 和 集合 P_y 中的第j个节点 p_y^j 存在空间冲突,当且仅当满 足以下约束条件:

$$\begin{cases} p_x^i \cap p_y^j \neq \emptyset \\ x \neq y \end{cases}$$
(11)

同理集合 T_x中的第*i*个节点 t_z和集合 T_y中的第*j*个节 点式存在时间上的冲突,当且仅当满足以下约束条件:

$$\begin{cases} (t_x^i, t_x^i + h - 1) \cap (t_y^j, t_y^j + h - 1) \neq \emptyset \\ x \neq y \end{cases}$$
(12)

图 4(a)、4(b)分别为根据图 3 和表 2 产生的卫星

光网络的空间冲突图和时间冲突图模型,节点间的时间、路径冲突越大,在当前时刻需要使用的波长数目就越多。通过减少时间和路径冲突,可以减少卫星光网

第 60 卷 第 9 期/2023 年 5 月/激光与光电子学进展

图4 空间、时间冲突图模型。(a)空间冲突图;(b)时间冲突图 Fig. 4 Space and time conflict map models. (a) Space conflict map; (b) time conflict map

3.2 波长分配方法

通过结合时间冲突图和空间冲突图即得到时空冲 突图,通过时空冲突图中边的条数可以得到需要的波 长数目,卫星光网络中的波长需求定义为 min [max(*C*)],即最小化最大着色数目。

将请求*r*被定义为一个节点(t_r, p_r),对于两个不同的请求 r_x 和 r_y ,节点对(t_x, p_x)和(t_y, p_y)之间是冲突的当且仅当:

$$\begin{cases} p_x \cap p_y \neq \emptyset \\ (t_x, t_x + h_x - 1) \cap (t_y, t_y + h_y - 1) \neq \emptyset \\ x \neq y \end{cases}$$
(13)

假设每个请求r可以从开始可行时间集 T_r = (t_1, t_2, \dots, t_r)和可用路径集 P_r =(p_1, p_2, \dots, p_r)中选择 可行时间点 t_r 和可用路径集合 p_r ,两个不同的请求 r_x 和 r_y 在时间上发生冲突的概率 $P_{TC}(x, y)$ 定义为

$$P_{\rm TC}(x,y) = \frac{|T(x,y)|}{|T(x)| \cdot |T(y)|}, \qquad (14)$$

式中:T(x, y)表示时间集T(x)和T(y)之间的链路 数目;|T(x)|和|T(y)|表示时间集T(x)和T(y)中节 点数目。同理可定义两个不同的请求 r_x 和 r_y 在空间上 发生冲突的概率 $P_{PC}(x, y)$ 定义为

$$P_{\rm PC}(x,y) = \frac{|P(x,y)|}{|P(x)| \cdot |P(Y)|},$$
 (15)

则业务x,y的时空冲突度可以表示为

$$C(x, y) = P_{TC}(x, y) \cdot P_{PC}(x, y) .$$
 (16)
因此,定义业务r的波长冲突度C(r)为

$$C(r) = \sum_{x \in R, x \neq r} C(r, x)_{\circ}$$
(17)

在确定业务开始传输时刻之后,需要为业务确定 传输路径和分配相应的波长。路径确定采用 k-short 原则,即为当前业务选择 k条最短路径路径,并且不考 虑比最短路径多σ跳的所有路径。波长分配采用的原

则是在满足所有业务请求的条件下,采用最大冲突度 优先分配波长原则。图5所示为基于最大冲突度优先 分配波长原则的波长分配结果。由图5可知,业务请 求*R*₁、*R*₃时刻3在路径d上存在冲突,因此需要2个波 长资源来实现5个业务在该时间段内的成功传输。

图 5 波长冲突图模型 Fig. 5 Wavelength conflict map model

最大冲突度优先波长需求算法(算法2)如表3所示,首先根据算法1随机生成网络的拓扑,采用*k*-short

表3 最大冲突度优先波长需求算法

Table 3 Maximum conflict degree priority wavelength demand

algorithm

Algorithm 2: maximum conflict degree priority wavelength demand algorithm

Input: network physical connectivity α , nodes number N,

business request set R, k.

Output: time slots and paths allocated for services (t_r, p_r) , total number of wavelengths *W*.

- 1) Initialize W = 1;
- 2) Generate network physical topology G = (V, E) according to Algorithm 1;
- Allocate available path sets P_r and available time sets T_r for service requests r using k-short algorithm;
- 4) Generate space conflict map and temporal conflict map based on *P_r* and *T_r*;
- 5) Calculate time conflict $P_{TC}(r)$ referring to Eq. (14);
- 6) Calculate space conflict $P_{PC}(r)$ referring to Eq. (15);
- 7) Sort $P_{\rm TC}(r)$ and $P_{\rm PC}(r)$ in descending order;
- Calculate wavelength conflict C(r) referring to Eqs. (16) and (17);
- 9) Sort C(r) in descending order;
- 10) Allocate wavelength, p_r and t_r to node with maximum C(r);
- 11) If new wavelength conflict with existing wavelengths, then W = W + 1;
- 12) Else W = W;
- 13) End if;
- 14) Remove maximum conflicting business from business request set and go to step 5);

15) If $R \neq \emptyset$, then go to 10);

16) **Else** end if.

算法得到可用路径集和可用时间集,在此基础上生成时间冲突图和空间冲突图。其次在计算出时间冲突度和空间冲突度的基础上相乘得到波长冲突度,根据波长冲突度递减顺序对业务进行波长资源分配,依次进行迭代,直到所有业务都被分配波长资源,最终可以得到网络的波长资源需求。

4 数值仿真

4.1 仿真场景设置

为了分析动态卫星光网络的波长需求,本文以具有 64 个节点的 Starlink 星座作为仿真对象,首先利用 卫星工具包 STK 模拟了网络场景,产生卫星节点参数,然后利用 Matlab 进行仿真实现。Starlink 星座拓扑 结构^[20]如图 6 所示。

图 6 Starlink 星座拓扑结构图 Fig. 6 Topological structure diagram of Starlink constellation

在仿真过程中,采用节点之间随机生成链路的方 式来模拟网络的动态变化。初始时刻假设节点之间没 有链路,在满足物理连通度和节点度($\sigma_{min}, \sigma_{max}$)约束的 条件下,任意两个卫星节点之间均可以建立星间链路, 利用算法1生成网络的连接拓扑,然后利用算法2计算 光网络的波长需求数目。卫星参数设置如表4所示。

表4	卫星参数设置	

Table 4 Satellite parameter	setting
-----------------------------	---------

Parameter	Value
Satellite number	64
Tracks number	8
Intra-orbit satellite number	8
Height /km	1150
Inclination /(°)	53

为了研究卫星光网络最大跳数、转发器数目以及 业务重叠因子对波长需求数目的影响,在仿真过程中 采取控制变量的思想,设置卫星光网络默认参数,除了 特殊说明,参数按表5所示进行设置。

Table 5 Simulation parameter setting	
Parameter	Value
k	2
σ	1
Physical connectivity α	0.3
Network connectivity β	0.5
Transponders number	4
Maximum link hops	4
Business overlap factor	0.6

表5 仿真参数设置 able 5 Simulation parameter setti

4.2 仿真结果分析

相同的卫星节点数N和物理连通度 a 可以产生不同的网络连接,利用随机生成网络连接模拟卫星光网络的动态变化。根据算法1的思想,采用图的随机生成方法生成网络拓扑连接,根据算法2的思想对波长需求数进行分析。由于在同一物理连通度下可能有多种图的连接情况,波长需求数目会在一定范围内变化,

第 60 卷 第 9 期/2023 年 5 月/激光与光电子学进展

因此利用概率统计的思想对波长需求数进行分析。

图 7 所示为 N=64 时,不同物理连通度下网络波长 需求归一化概率分布。由图 7 可知,随着物理连通度的增 大,网络的波长需求数目减少,并且波长需求的变化范围 也变小。这是由于卫星光网络的波长需求受到网络拓扑 结构和实际业务量大小两个综合因素的影响。物理连通 度α与网络的拓扑结构设计有关,通过设计网络拓扑,增 大网络的物理连通度α,节点之间的直连链路增多,可以 在同样情况下减少波长数目需求,并且由于网络拓扑结 构更加稳定,因此波长变化范围也减小。

为了直观反映波长需求数随物理连通度的变化, 将图7结果绘制为图8。图8所示为物理连通度对卫 星光网络波长需求数的影响,其中竖线代表波长需求 数的变化范围,圆圈代表波长需求的平均值。如上所 述,波长需求的平均值和范围都随着物理连通性的增 加而减小,因此在进行卫星光网络拓扑结构设计时,应 考虑通过适当增大物理连通度来减少波长需求和网络 拓扑动态变化对波长需求的影响。

图 7 归一化波长需求分布。(a) α =0.2;(b) α =0.3;(c) α =0.4;(d) α =0.5 Fig. 7 Normalized wavelength requirement distribution. (a) α =0.2; (b) α =0.3; (c) α =0.4; (d) α =0.5

图 9 所示为网络连通度 β 对卫星光网络波长需求 数的影响,为了模拟卫星光网络的动态变化,在同一物 理连通度 α下,采用随机生成拓扑连接的方式进行多 次仿真,其中竖线代表波长需求数的变化范围。由 图 9 可知,随着网络连通度的增大,波长需求数目也随 之增多,这是由于节点之间需要建立的链路增多,在路 径上产生的冲突较大。对于相同的网络连通度,增大 物理连通度可以减少波长数目的使用。此外,由于卫 星光网络跳数的限制,物理连通度会影响网络连通度 的上限,对于较小的物理连通度,即使增加波长数目, 网络连通度也不会继续增大。

图 10 所示为卫星光网络最大跳数对波长需求数 的影响,为了模拟卫星光网络动态变化,在同一物理连 通度下,进行多次不同连接情况下的仿真,并对结果取 平均值。由图 10 可知,随着卫星光网络最大跳数的增 加,波长需求数不断增加,但是对于相同跳数来说,波

第 60 卷 第 9 期/2023 年 5 月/激光与光电子学进展

长需求的平均值几乎保持不变。

图 11 所示为卫星光网络上携带转发器数目对卫 星光网络连通度和波长需求数的影响。随着转发器数 目的增多,卫星光网络的连通性增大,当转发器数目为 5和6时,网络连通度几乎不变,这是由于此时转发器 已经几乎能保证所有潜在链路成功建链,限制网络连 通度主要是潜在星间链路的数目。此外,随着转发器 数目的增多,更多星间链路将被发现,因此需要更多的 波长数。当转发器数目大于4时,波长需求数不再增 加,这是由于潜在链路已经成功建立,并且可以通过寻

找波长冲突度小的路径来减少波长数目的使用。

图 12 所示为卫星光网络中不同业务量下,业务重 叠因子对卫星光网络波长需求的影响,其中竖线表示 波长数目的变化范围。由图 12 可知,卫星光网络中的 波长需求随着业务重叠因子的增大而增大,这是由于 业务重叠因子的增大意味着更多业务共享同一条激光 链路,导致业务之间的波长冲突度增大。此外,随着业 务量 R 增加,卫星光网络的波长数目也会增多,这是由 于业务量的增大会占用更多的光链路,波长数也因此 增加。

图 10 最大跳数对波长需求的影响。最大跳数为(a)2;(b)3;(c)4;(d)5

Fig. 10 Influence of maximum hops on wavelength requirements. Maximum number of link hops is (a) 2; (b) 3; (c) 4; (d) 5

图11 转发器数目对波长需求和网络连通度的影响

Fig. 11 Influence of number of transponders on wavelength requirements and network connectivity

Fig. 12 Influence of business overlap factor on wavelength requirements

5 结 论

针对动态卫星光网络中的波长需求问题,设计了 一种卫星光网络拓扑形成方法,在时间冲突图和空间 冲突图基础上,引入了时空冲突图方法来分析卫星光 网络中的波长需求,通过概率统计的思想来模拟卫星 光网络的动态变化。仿真结果表明,网络物理连通度 对卫星光网络波长需求具有决定性作用,通过合理设 计链路最大跳数和转发器数目可以减少波长数目使 用。最后分析了业务重叠对波长需求的影响,结果表 明,在业务重叠因子较大情形下应该给卫星光网络分 配更多的波长,以保证业务的正常传输。

参考文献

 [1] 刘俊,姚予木,李培楠,等.激光测高卫星全波形回波 数据的参数优化小波降噪[J].中国激光,2021,48(23): 2310001.

Liu J, Yao Y M, Li P N, et al. Parameter optimization wavelet denoising algorithm for full-waveforms data of laser altimetry satellite[J]. Chinese Journal of Lasers, 2021, 48(23): 2310001.

[2] 易克初,李怡,孙晨华,等.卫星通信的近期发展与前

第 60 卷 第 9 期/2023 年 5 月/激光与光电子学进展

景展望[J]. 通信学报, 2015, 36(6): 161-176.

Yi K C, Li Y, Sun C H, et al. Recent development and its prospect of satellite communications[J]. Journal on Communications, 2015, 36(6): 161-176.

- [3] 李海涛.中国深空测控网光通信技术途径分析与发展展 望(特约)[J].红外与激光工程,2020,49(5):20201003.
 Li H T. Technical approach analysis and development prospects of optical communication technology in China Deep Space TT & C Network(Invited)[J]. Infrared and Laser Engineering, 2020, 49(5): 20201003.
- [4] 何爽,张鹏,魏佳,等.面向大气激光通信的空间光到 少模光纤耦合特性研究[J].中国激光,2021,48(23): 2306001.

He S, Zhang P, Wei J, et al. Analyses of coupling characteristics of space light to few-mode fiber for atmospheric laser communication[J]. Chinese Journal of Lasers, 2021, 48(23): 2306001.

[5] 谭立英,孙征虎.深空月地激光高速信息传输技术[J]. 深空探测学报,2019,6(6):515-522.

Tan L Y, Sun Z H. High speed laser information transmission technology of deep space between moon and earth[J]. Journal of Deep Space Exploration, 2019, 6(6): 515-522.

- [6] 高铎瑞,谢壮,马榕,等.卫星激光通信发展现状与趋势分析(特邀)[J].光子学报,2021,50(4):0406001.
 Gao D R, Xie Z, Ma R, et al. Development current status and trend analysis of satellite laser communication (invited)[J]. Acta Photonica Sinica, 2021, 50(4): 0406001.
- [7] 徐淼,史浩东,王超,等.空间目标多维度探测与激光通 信一体化技术研究[J].中国激光,2021,48(12):1206002.
 Xu M, Shi H D, Wang C, et al. Technology for integrating space object multidimensional detection and laser communication[J]. Chinese Journal of Lasers, 2021,48(12):1206002.
- [8] Yang Q L, Tan L Y, Ma J, et al. An analytic method of dimensioning required wavelengths for optical WDM satellite networks[J]. IEEE Communications Letters, 2011, 15(2): 247-249.
- [9] Wang H, Li X, Huang S G. Satellite laser communication assisted P-cycle protection against SRLG failures in WDM optical networks[C]//2021 17th International Conference on the Design of Reliable Communication Networks (DRCN), April 19-22, 2021, Milano, Italy. New York: IEEE Press, 2021.
- [10] Wang J, Jia T, Wang S S, et al. Wavelength synchronization technology for UDWDM-PON transmitter based on injection locking[J]. Chinese Optics Letters, 2021, 19(1): 010602.
- [11] Wen G L, Zhang Q, Wang H T, et al. An ant colony algorithm based on cross-layer design for routing and wavelength assignment in optical satellite networks[J]. China Communications, 2017, 14(8): 63-75.
- [12] Liu Z, Guo W, Deng C L, et al. Wavelength dimensioning for wavelength-routed WDM satellite network[J]. Chinese Journal of Aeronautics, 2016, 29(3): 763-771.
- [13] 王蔚龙,李勇军,赵尚弘,等.基于负载均衡的卫星光

第 60 卷 第 9 期/2023 年 5 月/激光与光电子学进展

研究论文

网络路由与波长分配方法研究[J]. 激光与光电子学进展, 2021, 58(7): 0706004.

Wang W L, Li Y J, Zhao S H, et al. Routing and wavelength assignment based on load balance for optical satellite network[J]. Laser & Optoelectronics Progress, 2021, 58(7): 0706004.

- [14] Guo Y Y, Wang D J, Liu F L. Research on routing and wavelength/subcarrier assignment algorithm based on layered-graph model in optical satellite networks[C]// 2014 5th International Conference on Optical Communication Systems (OPTICS), August 28-30, 2014, Vienna, Austria. New York: IEEE Press, 2014.
- [15] Boumalek K, Benslama M, Aris S. The influence of operating laser wavelengths on Doppler effect in LEO Optical satellite constellation[C]//2021 12th International Conference on Information and Communication Systems (ICICS), May 24-26, 2021, Valencia, Spain. New York: IEEE Press, 2021: 189-194.
- [16] Baroni S, Bayvel P. Wavelength requirements in arbitrarily connected wavelength-routed optical networks[J]. Journal of Lightwave Technology, 1997, 15(2): 242-251.

- [17] Liu Z, Guo W, Deng C L, et al. Perfect match modelbased link assignment to design topology for satellite constellation system[J]. International Journal of Satellite Communications and Networking, 2016, 34(2): 263-276.
- [18] Sun X, Cao S Z. A routing and wavelength assignment algorithm based on two types of LEO constellations in optical satellite networks[J]. Journal of Lightwave Technology, 2020, 38(8): 2106-2113.
- [19] Liu X F, Yang L, Chen Q, et al. An analytic method of wavelength requirements in dynamic optical satellite networks[J]. IEEE Communications Letters, 2020, 24 (11): 2569-2573.
- [20] 刘渊,薛新毅,王晓锋.基于云平台的 Starlink 星座高性能 仿真技术研究[J/OL].系统仿真学报:1-13.[2021-12-20]. http://kns.cnki.net/kcms/detail/11.3092.V.20211117.2104. 002.html.

Liu Y, Xue X Y, Wang X F. Research of highperformance emulation technology of Starlink constellation based on cloud platform[J/OL]. Journal of System Simulation: 1-13. [2021-12-20]. http://kns.cnki.net/kcms/ detail/11.3092.V.20211117.2104.002.html.